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ABSTRACT: The comparison of protein conformational ensembles is of central importance in
structural biology. However, there are few computational methods for ensemble comparison, and
those that are readily available, such as ENCORE, utilize methods that are sufficiently
computationally expensive to be prohibitive for large ensembles. Here, a new method is presented
for efficient representation and comparison of protein conformational ensembles. The method is
based on the representation of a protein ensemble as a vector of probability distribution functions
(pdfs), with each pdf representing the distribution of a local structural property such as the
number of contacts between Cβ atoms. Dissimilarity between two conformational ensembles is
quantified by the Jensen−Shannon distance between the corresponding set of probability
distribution functions. The method is validated for conformational ensembles generated by
molecular dynamics simulations of ubiquitin, as well as experimentally derived conformational ensembles of a 130 amino acid
truncated form of human tau protein. In the ubiquitin ensemble data set, the method was up to 88 times faster than the existing
ENCORE software, while simultaneously utilizing 48 times fewer computing cores. We make the method available as a Python
package, called PROTHON, and provide a GitHub page with the Python source code at https://github.com/PlotkinLab/Prothon.

■ INTRODUCTION
One of the fundamental principles that has influenced protein
science is the structure−function paradigm: The idea that, for
proteins with a reliable and stable three-dimensional (3D)
structure, the fold invariably determines the protein’s
functions.1−3 Protein structures are central to molecular
biology and are used for example in synthetic biology4−7 and
in drug design.6,8,9

Comparing protein structures is a common and useful
practice in structural biology for the understanding of
functional and evolutionary relationships.1−3,10−12 Conse-
quently, several quantitative measures for comparing protein
structures have been developed; the most commonly used
dissimilarity measure is the distance-based global root-mean-
square deviation (RMSD) of atomic positions. This has,
however, been shown to be one of the least representative of
the degree of structural dissimilarity compared to contact-
based methods, such as Cβ−Cβ pairwise distances, that at least
in some cases are more robust and relevant.13 Other
limitations, such as the dependence of RMSD on the accuracy
of the superposition of protein structures, and its sensitivity to
protein length and particularly the presence of flexible regions,
have motivated more accurate measures used in Critical
Assessment of techniques for protein Structure Prediction
(CASP) competitions. Here metrics such as the global distance
test total score (GDT-TS) and template modeling score (TM-
score) are commonly used to quantify the similarity between
computationally predicted structures and experimentally
determined structures.13−16 In estimating the kinetic proximity
of partially disordered protein structures to the native state,

generalizations of geometrical Euclidean distance have been
shown to be the most accurate metric of proximity between
two structures.17,18

Proteins are dynamic systems and explore a vast conforma-
tional space. Thus, comparisons between individual structures
often need to be generalized to comparisons between
ensembles of structures to accurately characterize macrostates
of proteins. Unfolded states, partially unfolded states, or
intrinsically disordered proteins (IDPs) require an ensemble
description to properly characterize them. IDPs do not have a
well-defined native structure but exist as an equilibrium
ensemble of diverse conformations, which interconvert
rapidly.19−24 Comparisons between ensembles of structures
have thus been developed to treat these systems.
Unlike protein structure comparison, for which many

metrics are available, efficient methods and software for
comparing protein structural ensembles are much less
common. The first attempt to quantitatively measure the
dissimilarity between structural ensembles was an extension of
the global RMSD.25 A different approach was proposed by
Lindorff-Larsen and Ferkinghoff-Borg,26 which involves the
estimation of the underlying probability distributions of
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protein conformational ensembles and the quantification of the
overlap between these probability distributions using a
symmetrized form of the Kullback−Leibler divergence.26−28
Three methods were proposed for estimating the underlying
probability densities, including the quasi-harmonic approx-
imation, conformational clustering, and dimensionality reduc-
tion;26 all three methods had serious limitations pointed out by
the authors. While the quasi-harmonic approximation method
is relatively fast, it is only effective for ensembles that can be
described by a multivariate normal distribution. The other two
methods require the calculation of all pairwise global RMSD
values, a calculation scaling as M M M M( )( 1)1

2 1 2 1 2+ + + ,
where M1 and M2 are the two ensemble sizes to be compared,
which can be prohibitively expensive for large ensembles, due
to the optimization of the structural superposition of structures
that is required. For example, using the current computing
power on the Digital Research Alliance of Canada Cedar
computing cluster (https://alliancecan.ca), to compare two
ensembles of a peptide of 76 amino acids, each of 15000
structures, takes 58 h (2 days and 10 h) on a single core, and 7
h on 48 cores running in parallel.
On the other hand, large ensembles are now routinely

generated from molecular dynamics (MD) simulations, and it
is often useful to compare protein ensembles generated from
MD simulations using different force fields, simulation
parameters, solvent conditions, or amino acid sequences. For
these practical situations involving large conformational
ensembles, there is a need for an effective quantitative measure
and software for comparing structural ensembles, which does
not require the computationally expensive process of structural
superposition.
To address the problem of the high computational cost

required for optimal structural alignment, as well as the
potential issues of accuracy mentioned above that are
associated with the use of the global RMSD of atomic
positions as a structural dissimilarity measure, contact-based
measures and measures utilizing internal coordinates, for
example, Ramachandran torsion angles, for structural compar-
ison have previously been proposed.13,29 More recently, a
measure for comparing IDP ensembles based on Cα−Cα
distance matrices was described in ref 30. Although the
method described in ref 30 is superposition-independent,
therefore requiring relatively lower computational cost, it only
considers distance distribution averages rather than the full
distributions themselves.
In the present work, we introduce and implement a new

generalized method for the efficient representation and
comparison of protein conformational ensembles. The method
involves the utilization of the Jensen−Shannon Distance (JSD)
metric for the quantification of the difference between
probability distribution functions representing the distributions
of a local structural property θ of polypeptide chains that
constitute the protein ensemble under consideration. A related
approach for comparing conformational ensembles was
previously introduced by McClendon, Hua, Barreiro, and
Jacobson, in which the Kullback−Leibler Divergence was used
to quantify the differences between the distributions of the
Ramachandran torsion angles.31 In principle, any local
structural property can be used in our method. Local structural
properties including per residue solvent accessible surface area
(SASA),32,33 virtual Cα−Cα bond angle (CABA) and torsion
angle (CATA),34 Cα contact number (CACN), and Cβ contact

number (CBCN)35,36 have been implemented in other
contexts and could be applied to the method introduced
here. In this manuscript, we use CBCN. The method of
protein ensemble comparison described here was implemented
using the Python programming language, and is made available
as a Python package, called PROTHON (PROtein θ
comparisON), for easy access to the computational structural
biology scientific community. PROTHON provides an easy-to-
use protein ensemble comparison program and a simple code
framework for extension to include other local structural
properties. We provide a GitHub page with the Python source
code at https://github.com/PlotkinLab/Prothon.

■ DESCRIPTION
In this section, we describe the algorithm for the efficient
representation and comparison of protein conformational
ensembles.

Matrix Representation of a Protein Ensemble.
Consider a protein ensemble with M conformations and N
local structural property values (e.g., CBCN). Typically N is
proportional to the number of amino acids in the chain. Let θ
be a local structural property, such as the per-residue Cβ
contact number (CBCN)35,36 (see section on Cβ Contact
Number Local Structural Property). In a given conformation m
of the polypeptide chain, there are N θ values, and for a given
local index such as a given residue, there are M θ values. Thus,
θ is a function of (m, n), the conformation index and the
residue index. As parametrized by the local property θ, the full
ensemble of conformations can be represented by an M × N
matrix, , with elements Xm,n given by eq 1:

µ µ

µ µ

µ µ

µ µ

µ µ

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

n N

n N

n N

m m m m n m N

M M M M n M N

1,1 1,2 1,3 1, 1,

2,1 2,2 2,3 2, 2,

3,1 3,2 3,3 3, 3,

,1 ,2 ,3 , ,

,1 ,2 ,3 , ,

=

(1)

Each row of matrix can be thought of as a vector
representing the θ values in a conformation, e.g.,
C , , , , , ,m m m m m n m N,1 ,2 ,3 , ,= | ··· ··· , and each column is
an ensemble ( , , , , , , )n n n n m n M n1, 2, 3, , ,= ··· ··· of local
values of θ across all conformations in the protein ensemble. A
typical size of might be a (M, N) = 10,000 × 100
dimensional matrix.

Protein Ensemble Represented as a Vector of Local
Ensembles. The above matrix representing a protein
ensemble, as described above in Matrix Representation of a
Protein Ensemble, can alternatively be written as a vector of
local ensembles θn (see eq 2).

X , , ,

, , , , , ,
n N

n N

1 2 3

1 2 3

= |{ } { } { } ···{ }···{ }

| ··· ··· (2)

Each ensemble θn can further be represented by a probability
distribution function (pdf); e.g., the ensemble of θ1 can be
represented as p(θ1) ≡ p1. The conformational ensemble of the
whole protein may then be written as
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X p p p p p, , , , , ,p n N1 2 3= | ··· ··· (3)

In the present work, we represent the pdfs in eq 3 by one-
dimensional (1D) distribution functions. The probability
distribution function pn representing each θn is determined
by Gaussian kernel-density estimation with the Silverman
bandwidth estimator method,37 which is implemented here
using SciPy.38 A conventional histogram with suitable choice of
binning may be used as well; however, we choose Gaussian
kernel-density estimation here because of its advantages of a
smoother estimate for the density distribution, which is
convenient for ensemble comparison. To implement the
ensemble comparison analysis below, we compare two (or
more) distributions pn

X and pn
Y for the same θn as follows. The

minimum and maximum sampled values of θn are first
determined; then the values of pn

X and pn
Y at ν = 100 equally

spaced points between θmin and θmax are obtained. Each
distribution is represented by ν = 100 values:

p p p p p

p p p p p

, , , ,

, , , ,

n
X

n
X

n
X

n
X

n
X

n
Y

n
Y

n
Y

n
Y

n
Y

1, 2, 3, ,

1, 2, 3, ,

= { ··· }

= { ··· } (4)

The value ν may be increased beyond 100 if necessary. The
choice of θmin and θmax typically results in one or more of the
distributions having values of zero near one or both of the
limits of θ.

Quantifying Similarity between Protein Ensembles.
Here, we propose an efficient and effective dissimilarity
measure for protein conformational ensembles, by comparing
pdfs representing a local property distribution using the
Jensen−Shannon Distance (JSD) metric. The JSD is an
information theory-based measure for comparing two proba-
bility distributions. A related nonmetric version of the JSD, the
Jensen−Shannon Divergence, has been used to quantify the
dissimilarity between protein ensembles in a previous study.28

Employing this procedure in ref 28 can require high
computational cost, however, and may have limited practical
applicability to large ensembles.
The ensemble representation as described in Protein

Ensemble Represented as a Vector of Local Ensembles above
allows for the calculation of both local and global similarity
between two protein ensembles. Given two protein ensembles
X = |p1X, p2X, p3X, ···, pn

X, ···, pN
X⟩ and Y = |p1Y, p2Y, p3Y, ···, pn

Y, ···, pN
Y ⟩,

which are represented as vectors of pdfs (pn
X and pn

Y ) of a local
structural property, the dissimilarity between ensembles X and
Y is estimated as the N-dimensional vector, termed here as the
dissimilarity vector, given by

D , , , , , ,n N1 2 3= | ··· ··· (5)

where each component of D, p p( , )n n
X

n
Y= , is the JSD

between the probability distributions representing the
corresponding local structural property values θn in the
polypeptide chain in the ensembles X and Y. The JSD is
defined as

p p D p p D p p( , )
1
2

( , ) ( , )n n
X

n
Y

n
X

n n
Y

nKL KL
1/2= [ + ]

(6)
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X
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Y= + (7)

and, e.g.,
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KL 2

1
, 2

,

,

=
=

(8)

is the Kullback−Leibler divergence between probability
distributions pn

X and pn.
27

n has a lower and upper bound
of 0 and 1, respectively. A value of 0 indicates that two
ensembles are identical while a value of 1 suggests that they are
completely different.
The global dissimilarity D between ensembles X and Y is

calculated as the average over the N local dissimilarities.

D
N
1

n

N

n
1

=
= (9)

Motif dissimilarity between ensembles can also be determined
in a similar fashion by averaging over local structural property
values belonging to a particular motif. The dissimilarity vector
in eq 5 allows ensemble comparisons for proteins with both
structured and disordered domains.

Cβ Contact Number Local Structural Property. The Cβ
contact number (CBCN) implemented in PROTHON is
defined by the number of Cβ atoms on other residues
separated by 3 or more amino acids from a given residue that
are located within a sphere of radius ro centered on the Cβ
atom of the residue of interest. Here we implement this
criterion with a smooth cutoff function:

i
r r

CBCN( )
1

1 exp ( )j
j i

N

ij o1
2

=
+ [ ]=

| |> (10)

where the sum runs over the N Cβ atoms j that may be in
contact with the Cβ atom i such that |j − i| > 2, and rij is the
distance between Cβ atoms i and j, belonging to residues a and
b with a sequence separation |a − b| > 2. The parameters β and
ro were taken to be 50 nm−1 and 1 nm, respectively. A similar
method for calculating contact number was previously used by
Kinjo, Horimoto, and Nishikawa35 and Yuan.36

Measuring Significant Dissimilarity. To compare two
protein ensembles and with Mx and My number of
conformations, respectively, we consider only local dissim-
ilarities (i.e., n) between the ensembles that are statistically
significant relative to dissimilarities within each ensemble.
samples of each ensemble are generated by randomly sampling
(with replacement) 1000 conformations from ensembles
and , respectively. The local dissimilarities n are then
calculated between the samples within the same ensemble
and across different ensembles, which results in 2

interensemble sample dissimilarities and ( )2 2× intra-

ensemble sample dissimilarities. In this present work, we take
5= samples, so that there are 25 interensemble sample

dissimilarities and 20 intraensemble sample dissimilarities (10
for and , respectively). The statistical significance of local
dissimilarities n are calculated using the Mann−Whitney U
test,38−40 which is a nonparametric test of the null hypothesis:
the probability of x being greater than y is equal to the
probability of y being greater than x for randomly selected
values x and y from two populations. Only dissimilarities n
with p-values <0.05 are taken to be statistically significant.
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■ VALIDATION
The validity and computational efficiency of the introduced
method for the comparison of protein ensembles implemented
in PROTHON is demonstrated in the sections below with
computationally generated, experimentally derived, structured,
and intrinsically disordered protein ensembles.

Comparing Computationally Generated Ensembles
of Ubiquitin. Ubiquitin is a regulatory protein that exists in all
eukaryotic cells. It performs various functions through
conjugation to many different target proteins.41 Ubiquitin
consists of 76 amino acids and has a molecular mass of about
8.6 kDa.
To generate conformational ensembles for the natively

structured protein ubiquitin, we used the 3D coordinates of its
atoms downloaded from the protein data bank (PDB ID:
1UBQ42) as the initial state to perform molecular dynamics
(MD) simulations with the CHARMM36m force field43 using
GROMACS (version 2019.2).44 All simulations were per-
formed in explicit solvent (TIP3P water model, and 150 mM
NaCl) at 300 K and 1 bar with periodic boundary conditions.
Five independent MD runs were performed for the folded
state, and five independent MD runs were performed for five
partially folded states of ubiquitin. Each MD run was 50 ns.
The partially folded states were obtained by performing global
unfolding MD simulations, using PLUMED,45 along a
collective coordinate Q defining the fraction of native contacts:

Q
K r r

( )
1 1

1 exp ( ( ) )i j ij ij( , )
0=

+ [ ] (11)

In eq 11, the sum runs over K pairs of native contacts (i, j),
where K is determined from all atom pairs within 0.45 nm in
the native structure. r ( )ij is the distance between atoms i and j
in conformation , belonging to residues a and b with a
sequence separation |a − b| > 3, and rij

0 is the native distance
between atoms i and j. The parameters β and λ were taken to
be 50 nm−1 and 1.5, respectively. A similar method for defining
fraction of native contacts has been used in several previous
studies; see, e.g., refs 46 and 47.
A time-dependent harmonic potential V(Q, t)

V Q t k Q Q t( , )
1
2

( ( ))0
2=

(12)

was applied to move the center of the bias linearly from Q0 = 1
to Q0 = 0.95, 0.90, 0.85, 0.80, 0.75, respectively, for 5 partially
folded states. The global unfolding bias was applied for 10 ns
and then held fixed for 40 ns. The spring constant k in eq 12
was taken to be 107 kJ·mol−1.
Conformations were sampled at equal time intervals of 40 ps

from the last 40 ns of five independent simulations for each of
the above values of Q0, giving a total of 5 500040000

40
× =

conformations in each of the folded and partially folded
ensembles. Figure 1 shows randomly selected structures from
the folded ensemble and for five partially folded ensembles that
correspond to the five Q0 values.
The degree of nativeness (or foldedness) of ubiquitin was

taken as the fraction of native contacts Q. To visualize these
ensembles, we represented them as CBCN M × N matrices
(see Matrix Representation of a Protein Ensemble) and as
pairwise RMSD M × M matrices (as used in ENCORE28),
where M = 30000 is the total number of structures and N = 70
is the number of Cβ atoms in each structure. The high

dimensional CBCN and RMSD matrices were then reduced to
two dimensions (2D) using principal component analysis
(PCA48), multidimensional scaling (MDS49), and t-distributed
stochastic neighbor embedding (t-SNE50) dimensionality
reduction methods (see Figure 2). PCA, MDS, and t-SNE
were implemented using Scikit-learn.51

In Figure 2, the ensembles are color coded as folded (red)
and partially folded (yellow, 95% folded; magenta, 90% folded;
cyan, 85% folded; green, 80% folded; blue, 75% folded). At this
2D level of resolution, where the PCA explained variance is
≈40%, the ensembles are more readily distinguishable for the
CBCN matrix representation (Figure 2 panels A, B, and C)
than for the pairwise RMSD matrix representation (Figure 2
panels D, E, and F). As expected for these ubiquitin ensembles,
the proximity in the projected space of structures in the
partially folded ensembles to structures in the natively folded
ensemble decreases with decreasing degree of foldedness (e.g.,
yellow data points are closer to the red than blues are to the
red), and the degree of spread increases with decreasing degree
of foldedness (i.e., there is more spatial variation in the
projected spaces for blue than there is for yellow) (see Figure 2
top panels A−C). These observed relationships between the
ensembles using the CBCN matrix are visually absent when
using the RMSD matrix representation (see Figure 2 bottom
panels D−F).
The distinct clusters of the ensemble with 75% natively

folded ensemble (e.g., blue in Figure 2A) correspond to
different independent simulations (see Figure S1). To enhance
clarity and interpretation of the data, each ensemble in Figure
2 is plotted separately (nonoverlapping) in Figures S2−S7.
Figure 3A shows the dissimilarity of partially folded

ensembles of ubiquitin from the natively folded ensemble at
different degrees of partial nativeness, 75% < Q < 95%,
quantified using the Cβ contact number (CBCN) local
structural property as implemented in PROTHON, and the
global RMSD structural property as implemented in
ENCORE, both using the PCA dimensionality reduction
method.28 Both the CBCN local structural properties and the
global RMSD structural property are able to distinguish the
partially folded ensembles from the folded ensemble and

Figure 1. Representative structures from ubiquitin ensembles. The
folded (red) and partially folded [95% folded (yellow), 90% folded
(magenta), 85% folded (cyan), 80% folded (green), and 75% folded
(blue)] ubiquitin ensembles. All images were rendered with PyMOL
molecular visualization system (https://pymol.org).
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correctly determine the order of nativeness without prior
knowledge of how the ensembles were obtained (Figure 3A).
We also examine four additional local structural properties

to demonstrate the generality of the PROTHON approach for
ensemble comparison: the Cα contact number (CACN),
virtual Cα−Cα bond angle (CABA) and torsion angle
(CATA),34 and per-residue solvent accessible surface area
(SASA).32,33 Figure S8 plots the dissimilarity vs the percentage
of native contacts, indicating that all local structural properties
accurately distinguish between the partially folded ensemble
and the folded ensemble of ubiquitin. The order parameter we
focus on here, CBCN, has among the largest relative
differences between the ensembles and does not exhibit the
same degree of nonlinear “plateauing” as some of the other
order parameters do.
Figure 3 panels B and C show a heatmap grayscale-coded

matrix of pairwise dissimilarity between the 5 partially folded
ensembles of ubiquitin, as quantified using CBCN and RMSD,
respectively. As expected, the dissimilarity increases (becomes
lighter in the matrices) as one moves away from the diagonal
in all 4 directions (up, down, left, and right). The dissimilarity
is zero when comparing an ensemble with itself (black
diagonal). The dissimilarity increases as one moves away
from the diagonal when using RMSD as a dissimilarity
measure, but an exception is noticeable: The ensemble with

75% native contacts is more dissimilar to the ensemble with
90% native contacts than it is to the ensemble with 95% native
contacts; this nonmonotonicity is unexpected. These results
show that the methods of protein ensemble representation and
comparison as implemented in PROTHON may be more
effective than those using RMSD.

Comparing Experimentally Derived Ensembles of the
Tau K18 Domain. Tau is an intrinsically disordered protein
(IDP), whose misfolding and aggregation are implicated in
many neurodegenerative diseases including Alzheimer’s disease
(AD), Pick’s disease (PiD), chronic traumatic encephalopathy
(CTE), corticobasal degeneration (CBD), and progressive
supranuclear palsy (PSP).52−54 Tau K18 domain (tauK18) is a
130-residue truncated human tau protein consisting of the four
microtuble binding repeats of tau. Five ensembles of tauK18
were download from the Protein Ensemble Database (PED ID:
PED00017).55 These ensembles represent different models of
tauK18 that were derived by first sampling random coil
conformations and then selecting those conformations that fit
experimentally determined chemical shifts and residual dipolar
couplings in NMR data.56

Table 1 shows the pairwise conformational dissimilarity of
the 5 tauK18 ensembles. Conformational dissimilarity here was
quantified using the Cβ contact number (CBCN) local
structural property implemented in PROTHON. The dissim-

Figure 2. Representation and dimensionality reduction of ubiquitin ensembles. The folded (red) and partially folded (yellow, 95% folded; magenta,
90% folded; cyan, 85% folded; green, 80% folded; blue, 75% folded) ubiquitin ensembles are represented using the PROTHON Cβ contact number
(CBCN) matrix (top panels A, B, C) and ENCORE RMSD matrix (bottom panels D, E, F). Dimensionality reduction to 2D using (left) principal
component analysis (PCA) for (A) CBCN and (D) RMSD matrix representations, (middle) multidimensional scaling (MDS) for (B) CBCN and
(E) RMSD matrix representations, and (right) t-distributed stochastic neighbor embedding (t-SNE) for (C) CBCN and (F) RMSD matrix
representations.
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ilarity values are all small (average dissimilarity ≈0.03),
suggesting that all 5 generated ensembles represent similar
ensembles, in agreement with the result obtained by Lazar et
al.30

Computational Efficiency. To evaluate the computational
efficiency of PROTHON, we recalculated the pairwise
dissimilarity between the 5 ubiquitin partially folded ensembles
described in Comparing Computationally Generated Ensem-
bles of Ubiquitin. The calculation of the pairwise ensemble
dissimilarity was repeated 6 times using PROTHON, and also
using the publicly available program ENCORE.28 For the ith
run, where i, 1 ≤ i ≤ 6, a subset of conformations were selected

from the 5000 total conformations that make up each
ensemble by choosing conformations at i regular frame
intervals, for a total of 5000

i
1 × conformations in each

ensemble; i.e., every ith frame is sampled, for 1 ≤ i ≤ 6. Since
PROTHON is currently a serial code, each run used a single
core on a 2020 MacBook Pro, while 48 cores were available for
ENCORE, which has parallel code, on the Digital Research
Alliance of Canada Cedar computing cluster (https://
alliancecan.ca).
Figure 3D shows the wall clock time required to calculate

the pairwise ensemble dissimilarity for the 5 ubiquitin partially
folded ensembles, with varying number of conformations in
each ensemble using PROTHON and ENCORE, respectively.

That is, we performed ( )5
2 ensemble dissimilarity calculations

to calculate 10 values of D in eq 9 for PROTHON and 10
values of the Jensen−Shannon divergence for ENCORE. While
the time required to run ENCORE increases exponentially
with the number of conformations (the y-axis of the plot is on
a log scale), the time required to run PROTHON essentially
remains the same at ≈300 s = 5 min. We anticipate that for
large ensemble sizes the scaling should be linear in the number
of conformations (times the chain length), because filling in

Figure 3. Comparing partially folded ensembles of ubiquitin. (A) Dissimilarity between partially folded ensembles (75% < Q < 95%) and the folded
equilibrium ensemble of ubiquitin. Dissimilarity is quantified using the local structural property of the Cβ contact number (circles) implemented in
PROTHON, and RMSD similarity is implemented in ENCORE (triangles). (B) Pairwise dissimilarity between the 5 partially folded ensembles of
ubiquitin in panel (A) using PROTHON. (C) Pairwise dissimilarity between the 5 partially folded ensembles of ubiquitin in panel (A) using
ENCORE.28 (D) Wall-clock time (computational efficiency) of PROTHON compared with ENCORE. ENCORE calculations were run on 48
cores; PROTHON calculations were run on a single core.

Table 1. Comparing Intrinsically Disordered Ensembles of
Tau K18a

Dissimilarity Ensemble 2 Ensemble 3 Ensemble 4 Ensemble 5

Ensemble 1 0.029 0.028 0.031 0.028
Ensemble 2 - 0.026 0.029 0.028
Ensemble 3 - - 0.026 0.027
Ensemble 4 - - - 0.029

aThe pairwise dissimilarity between 5 ensembles of tau K18 domain
quantified using the Cβ contact number local structural property
implemented in PROTHON.
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the matrix in eq 1 is sufficient to determine the distribution
Xp in eq 3. When i = 6 and each ensemble had

5000 8341
6

× = conformations, it takes ENCORE 596 s =
9 min, 56 s, which is twice that of PROTHON (which takes
298 s = 4 min, 58 s), to run. When i = 1 and each ensemble
had 5000 50001

1
× = conformations, the time it takes

ENCORE to run increases dramatically to 28,406 s = 7 h,
53 min, 26 s, which is more than 88 times that of PROTHON
(which takes 322 s = 5 min, 22 s) despite ENCORE using 48×
the cores of PROTHON. If ENCORE runs on a single core,
the corresponding calculation time for 5000 conformations is
58 h (2 days and 10 h), which would be 217.7 in Figure 3D. We
also note that this is not linear scaling for ENCORE; the 48
core calculations show a speedup of only 7.4×.
Although it may be possible to achieve speedup in practice

by substituting the RMSD matrix used in ENCORE with a
matrix using an alignment-free structural comparison, such as
dRMSD,57−59 fraction of common contacts (Q),60 local
distance test,61 global distance test (GDT),62 or minimal
Euclidean distance,18 the computational complexity would still
remain at M( )2 , where M is the number of structures to be
compared. This is in contrast to PROTHON, which achieves a
computational complexity of M( ). We reserve for future
work a more extensive, systematic comparison between the
metric we propose here and other metrics proposed in the
literature.

■ SOFTWARE AND DATA AVAILABILITY
PROTHON is freely available. Users can run PROTHON by
downloading the Python file Prothon.py from github under the
GPLv3 license at https://github.com/PlotkinLab/Prothon.
The snippet below shows how to use PROTHON to calculate
ensemble dissimilarity in only 12 lines of Python code. The
code below was used to generate the data for the plot in Figure
3A; a description follows.

The Prothon class is first imported from the Prothon
package (line 1), followed by the creation of a Prothon object
(line 7) initialized with the topology in pdb format (line 5) of
the conformations contained in these ensembles and a list of
the ensembles (line 4) to be compared. The dcd format has
been used here for the ensemble data, but any format
supported by the MDTraj package33 is allowed. The Prothon
ensemble_representation function is then used to represent the
ensembles as described in the present work using the Cβ
contact number (CBCN) local structural property (line 8).
The minimum and maximum values of CBCN in all ensembles
are obtained in line 9 using numpy, which is imported in line 2.

To calculate the dissimilarity between two ensembles, the
Prothon dissimilarity function is used (line 14), which returns a
list d with 3 objects: the global dissimilarity, local dissimilarity
values, and the p-values for the local dissimilarity (i.e.,
statistical significance, with dissimilarity being significant if
the p-value <0.05). There are 70 elements for the local
dissimilarity and for the p-values, corresponding to the number
of Cβ atoms. The global dissimilarity between each ensemble
and the first ensemble is saved (line 15) to the dissimilarity list
(created in line 11), which is finally displayed in line 17.
The ubiquitin molecular dynamics-generated ensemble data

set (229 MB zip file) is available at 10.5281/zenodo.7792288.

■ CONCLUSION
We have developed a new generalized method for the efficient
representation and comparison of protein ensembles. Our
newly developed method was implemented in the Python
programming language and made freely available as a Python
package called PROTHON to the computational structural
biology community. The method involves the representation
of a protein ensemble as a vector of probability distribution
functions of a local quantity involving each amino acid. Each
probability distribution function is estimated, using Gaussian
kernel density estimation, from the distribution of a local
structural property of the polypeptide chain. The Jensen−
Shannon distance between corresponding probability distribu-
tion functions then quantifies the dissimilarity between protein
ensembles. Here, the Cβ contact number (CBCN) was used as
a local structural property, but in principle, any local structural
property can be used in PROTHON. Examples include solvent
accessible surface area (SASA) per residue,32,33 virtual Cα−Cα
bond angle (CABA) and torsion angle (CATA),34 and Cα
contact number (CACN). PROTHON was shown to be
effective in correctly distinguishing computationally generated
ensembles of ubiquitin and experimentally derived ensembles
of a 130 amino acid fragment of tau protein. The computa-
tional efficiency of PROTHON, when compared to the
publicly available software ENCORE,28 can simultaneously
yield up to an 88-fold gain in wall-clock time while benefiting
from a 48-fold reduction in the number of computing cores
required.
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